Kinetics Hand-In Assignment

1	Consider the following reaction: $CO_2(g) + NO(g) \rightarrow CO(g) + NO_2(g)$ where CO_2 NO and

1. Consider the following reaction: $CO_2(g) + NO(g) \rightarrow CO(g) + NO_2(g)$, where CO_2 , NO, and CO are colorless and NO_2 is brown.

Suggest a method which could be used to monitor the rate of this reaction. (1 point)

Name:

2. A chemist wishes to determine the rate of reaction of zinc with hydrochloric acid. The equation for the reaction is: $Zn(s) + 2HCl(aq) \rightarrow H_2(g) + ZnCl_2(aq)$.

A piece of zinc is dropped into 1.00 L of 0.100 mol/L HCL and the following data were obtained:

Time (s)	Mass of Zinc (g)
0	0.016
4	0.014
8	0.012
12	0.010
16	0.008
20	0.006

(a) Calculate the average rate of reaction for the consumption of Zn in g/Ls for the entire 20s. (1 point)

(b) What would happen to the rate of reaction if 1.0 mol/L HCl was used instead? Explain why. (3 points)

CH40S Page 1 of 1

4. Consider the following reaction:

$$H_2(g) + Cl_2(g) \rightarrow 2HCl(g)$$
 $\Delta H = 92.3 \text{ kJ}$, Activation energy = 118 kJ

(a) Sketch and label a potential energy diagram for the reaction: (4 points)

(b) Explain how the diagram would be different if a catalyst was used. (1 point)

CH40S Page 2 of 2

5. A reaction occurs with the following mechanism:

Step 1:
$$N_2O_5 \rightarrow NO_2 + NO_3$$
 (slow)

Step 2:
$$NO_2 + NO_3 \rightarrow NO + NO_2 + O_2$$
 (fast)

Step 3: NO + NO₃
$$\rightarrow$$
 2 NO₂ (fast)

Determine

- (a) The net reaction. (2 points)
- (b) The intermediate(s). (1 point)
- (c) The rate determining step. (1 point)
- 6. Determine the differential rate equation for the following reaction and data. (4 points)

$$2 \text{ NO(g)} + \text{Cl}_2(g) \rightarrow 2 \text{ NOCl(g)}$$

Trial	Initial Concentration	Initial Concentration	Initial Rate
	[NO] (mol/L)	$[Cl_2]$ (mol/L)	(mol/Ls)
1	0.010	0.010	1.2×10^{-4}
2	0.010	0.020	2.3×10^{-4}
3	0.020	0.020	9.6x10 ⁻⁴